JrvAer il pans| (< (5 ALY /"1 N OS @ovk,
@ (Copied From webail®)
Introduction of Process Management

Program vs Process: A process is a program in execution. For example,
‘when we write a program in C or C++ and compile it, the compiler creates
binary code. The original code and binary code are both programs. When we
actually run the binary code, it becomes a process.

A process is an ‘active’ entity instead of a program, which is considered a
‘passive’ entity. A single program can create many processes when run
multiple times; for example, when we open a .exe or binary file multiple
times, multiple instances begin (multiple processes are created).

What does a process look like in memory?

Program vs Process: A process is a program in execution. For example,
when we write a program in C or C++ and compile it, the compiler creates
ninary code. The original code and binary code are both programs. When we
actually run the binary code, it becomes a process.

A process is an ‘active’ entity instead of a program, which is considered a
‘passive’ entity. A single program can create many processes when run
multiple times; for example, when we open a .exe or binary file multiple
times, multiple instances begin (multiple processes are created)

Stack /‘// HomeWC’?’K
L A s pth.'(o
/ » whet 18 KEWE’{ . pimAer® ernel 4reh|
@WWF |\3 mevwl*w M*e—d’bkﬁ
@whakmedﬂfewa a4
J - @NGAa 0
Heap
Data / _‘ R
. > The Canvoy Effed 15 @ phenormeneh
Text \/\\}\\ ‘/\/\ d/ly"\/\ (_/‘r’l. \(J'L\L\\“ e ("5')(»")(~([\\‘! ‘5 N L}S L€
lowey .

\l p .‘ y Y)
Mo dowsia 0wt foa feu
' (

. 2
prowds o g ,f;&}'s(e.'u—r mohean CPL
Lime |k. albotted fp a pALS es1, The FCES

andy

) ‘L\(ifﬂ (‘)f‘f\@'s Y EeSCES /

Agonthm ALL LNES \
cdrren one i Hthes

f’]f‘l P HtmO when HAe

(| () [) 1 ' l.,m"’ prtﬂq[‘e IV

Smeait PY0 o5 w il % r}\}

Text Section: A Process, sometimes known as the Text Section, also includes
the current activity represented by the value of the

Program Counter. '
Stack: The stack contains temporary data, such as function parameters,

returns addresses, and local variables.
Data Section: Contains the global variable. o ‘
Heap Section: Dynamically allocated memory to process during its run time.

Attributes of a Process: A process has the following attributes.
1. ProcessId: A unique identifier assigned by the operating system
2. Process State: Can be ready, running, etc.

3. CPU registers: Like the Program Counter (CPU registers must be saved and restored when a
process is swapped in and out of CPU)

4. Accounts information: Amount of CPU used for process execution, time limits, execution ID etc.
5.1/0 status information: For example, devices allocated to the process, open files, etc.

6. CPU scheduling information: For example, Priority (Different processes may have different
priorities, for example a shorter Process assigned high priority in the shortest job first scheduling)

All of the above attributqs of a process are also known as the context of the
process.@ery process;has its own process control block(PCB), i.e each process

———

will have a unique PCB. All of the above attributes are part of the PCB.

States of Process: A process is in one of the following states:
1. New: Newly Created Process (or) being-created process.
2. Ready: After creation Process moves to Ready state, i.e. the processis ready for execution.

3. Run: Currently running process in CPU (only one process at a time can be under execution in a
single processor).

4. Wait (or Block): When a process requests I/0 access.

5. Complete (or terminated): The process completed its execution.

ready state

7. Suspended Block: When waiting queue becomes full.

Terminate

Preempt .

Create
— Blocked
Suspend Resume Suspend Resume

Blocked
Suspended

Ready
Suspended

Context Switching: The Process of saving the context of one process and
loading the context of another process is known as Context Switching. In

simple terms, it is like loading and unloading the process from the running
state to the ready state. -

When does context switching happen?

1. When a high-priority process comes to a ready state (i.e. with higher
priority than the running process

2. An Interrupt occurs ! 02,&;&

Hanctio
3. Userand kernel-mode switeh (Itis not Necessary though)
4. Pre-emptive CPU scheduling used.

Unblock

States of g Process ijn Operating
Systems

S - R
Secondary Memory
CHse HD)

New (Create) — In this step, the process is about to be created but not yet
created, it is the program which is present in secondary memory that will
be picked up by OS to create the process.

Ready — New -> Ready to run. After the creation of a process, the ._
process enters the ready state i.e. the process is loaded into the main
memory. The process here is ready to run and is waiting to get the CPU
time for its execution. Processes that are ready for execution by the CPU
are maintained in a queue for ready processes.

Run — The process is chosen by CPU for execution and the instructions
within the process are executed by any one of the available CPU cores.
Blocked or wait — Whenever the process requests access to 1/O or
needs input from the user or needs access to a critical region(the lock for
which is already acquired) it enters the blocked or wait state. The process
continues to wait in the main memory and does not require CPU. Once
the I/0 operation is completed the process goes to the ready state.
Terminated or completed — Process is killed as well as PCB is deleted.
Suspend ready — Process that was initially in the ready state but was
swapped out of main memory(refer Virtual Memory topic) and placed onto
external storage by scheduler is said to be in suspend ready state. The
process will transition back to ready state whenever the process is again
brought onto the main memory.

Suspend wait or suspend blocked — Similar to suspend ready but uses
the process which was performing 1/0 operation and lack of main memory
caused them to move to secondary memory. When work is finished it may

go to suspend ready.

CPU a.nd 110 Bqu_nd Processes: If the process is intensive in terms of CPU
'operat.ron.s then it is called CPU bound process. Similarly, If the process is
intensive in terms of I/O operations then it is called 1/O bound process.

Types of schedulers: > #lcp khowem o Job scheddlan

1. Long term = performance — Makes a decision about how many
processes should be made to stay in the ready state, this decides the

(degree of multiprogrammiﬁgﬂOnce a decision is taken it lasts for a long
‘WWWscheduler.

2. Short term — Context switching time — Short term scheduler will decide
which process to be executed next and then it will call dispatcher. A
dispatcher is a software that moves process from ready to run and vice

versa. In other words, it is context switching)

3. Medium term — Swapping time — Suspension decision is taken by
medium term scheduler. Medium term scheduler is used for swapping
that is moving the process from main memory to secondary and vice

versa.

Multiprogramming — We have many processes ready to run. There are two

types of multiprogramming:

1. Pre-emption — Process is_lforcefully emoved from CPU. Pre-emption is
also called as time sharing or mulfitasking.

2. Non pre-emption — Processes are not removed until they complete the

execution.
r; seuided by vaﬁe\&rms-

Degree of multiprogramming — The number of processes that can reside in
the ready state at maximum decides the degree of multiprogramming, e.g., if
the degree of programming = 100, this means 100 processes can reside in

the ready state at maximum.

Process Schedulers in Operating
System

The process scheduling is the activity of the process manager that handles
the removal of the running process from the CPU and the selection of
another process on the basis of a particular strategy.

Process scheduling is an essential part of a Multiprogramming operating
systems. Such operating systems allow more than one process to be loaded
Into the executable memory at a time and the loaded process shares the
CPU using time multiplexing.

There are three types of process scheduler.

1. Long Term or job scheduler :
It brings the new process to the ‘Ready State’. It controls Degree of
Multi-programming, i.e., number of process present in ready state at any
point of time. It is important that the long-term scheduler make a careful
selection of both I/0 and CPU-bound processes. I/0 bound tasks are
which use much of their time in input and output operations while CPU
bound processes are which spend their time on CPU. The job scheduler
increases efficiency by maintaining a balance between the two.

2. Short term or CPUY scheduler :

It is responsible for selecting one process from ready state for scheduling
it on the running state. Note: Short-term scheduler only selects the
process to schedule it doesn't load the process on running. Here is when
all the scheduling algorithms are used. The CPU scheduler is responsible
for ensuring there is no starvation owing to high burst time processes.
Dispatcher is responsible for loading the process selected by Short-term
scheduler on the CPU (Ready to Running State) Context switching is

done by dispatcher only. A dispatcher does the following:
1. Switching context.

2. Switching to user mode.

3. Jumping to the proper location in the newly loaded program.
3. Medium-term scheduler :

It is responsible for suspending and resuming the process. It mainly does
swapping (moving processes from main memory to disk and vice versa).
Swapping may be necessary to improve the process mix or because a

change in memory requirements has overcommitted available memory,
requiring memory to be freed up. It is helpful in maintaining a perfect

balance betwegn the ll/O poundgand the CPU bound. It reduces the
degree of multiprogramming.

Process Table and Process Control
Block (PCB)

While creating a
To identify the processes |

sition from one state to another, the
update information in the process’s PCB.

A Process control block (PCB) contains i
registers, quantum, prio

operating system must

! nformation about the process, i.e.
rity, etc. The process table is an array of PCB's, that

means logically contains a PCB for all of the current processes in the
system.

- Pointer — It is a stack pointer which is required to be saved when the
process is switched from one state to another to retain the current
position of the process.

- Process state - |t stores the respective state of the process.

« Process number — Every process is assigned with a unique id known as
process ID or PID which stores the process identifier.

« Program counter - It stores the counter which contains the address of
the next instruction that is to be executed for the process.

+ Register — These are the CPU registers which includes: accumulator,
base, registers and general purpose registers.

« Memory limits — This field contains the information about memory
management system used by operating system. This may include the
page tables, segment tables etc.

+ Open files list — This information includes the list of files opened for a
process.

Interrupts

The interrupt is a signal emitted by hardware or software when a process or
an event needs immediate attention. It alerts the processor to a high-priority
process requiring interruption of the current working process. In 1/0 devices
one of the bus control lines is dedicated for this purpose and is called

the Interrupt Service Routine (ISR).

Thread in Operating System e

e 2
What is a Thread? ; @ n\';u\)
A thread is a@h of execution A process can contain

multiple threads.

Why Multithreading?
A thread is also known as The idea is to achieve
parallelism by dividing a process into multiple threads. For example, in a
browser, multiple tabs can be different threads. MS Word uses multiple
threads: one thread to format the text, another thread to process inputs, etc.
More advantages of multithreading are discussed below

Process vs Thread?

The primary difference s that threads within the same process runin a
shared memory space, while processes run in separate memory spaces.

result threads share with other threads their code section, data section, and
OS resources (like open files and signals). But, like process, a thread has its
OWn program counter (PC), register set, and stack space.

Difference between Process and
Thread

Process: Processes are basically the programs that_are dispatched from the
ready state and are scheduled in the CPU for execution. PCB(Process
Control Block) holds the concept of process. A process can create other
processes which are known as Child Processes. The process takes more
time to terminate and it is isolated means it does not share the memory with
any other process. . 3

The process can have the following states new, ready, running, waiting,
terminated, and suspended.

Thread: Thread is the segment of a process which means a process can
have multiple threads and these multiple threads are contained within a
process. A thread has three states: Running, Ready, and Blocked.

Difference between Process and Thread:

S.NO Process Thread

Process means any program
1. is in execution. Thread means a segment of a process.

The process takes more time

2. to terminate. The thread takes less time to terminate.

It takes more time for

3. creation. It takes less time for creation.

It also takes more time for

4, itchi
context switching. It takes less time for context switching,
The process is less efficient i
cientin - Thread is more efficj i
5. terms of COMmunication. Frentin terms of

CoOmmunication,

S.NO Process

10.

11.

12.

13,

Multiprogramming holds the
concepts of multi-process.

The process is isolated.

The process is called the
heavyweight process.

Process switching uses an
interface in an operating
system.

If one process is blocked then
it will not affect the
execution of other processes

The process has its own
Process Control Block, Stack
and Address Space.

7

Changes to the parent

Process do not affect child
processes.

A system call js involved in it.

Thread

We don’t need multi programs in action for
multiple threads because a single process
consists of multiple threads.

Threads share memory.

A Thread is lightweight as each thread in a
process shares code, data, and resources.

Thread switching does not require calling an
operating system and causes an interrupt to
the kernel.

If a user-level thread is blocked, then all
other user-level threads are blocked.

Thread has Parents’ PCB, its own Thread

Control Block, and Stack and common
Address space.

Since all threads of the same process share
address space and other resources so any
changes to the main thread may affect the

behaviour of the other threads of the
process.

No system call is involved, it is created using
APIs,

14.

5.NO Process

Thread

The process does not share

data with each other. Threads share data with each other.

CPU Scheduling in Operating Systems

Scheduling of processes/work is done to finish the work on tim}SUCPhLijle
Scheduling is a process that allows one process to use the CPUw

i ‘ ilability of any
another process is delayed (in standby) due to unavai
resources such as | / O etc, thus making full use qf the CPU. The ?u.rpose of
CPU Scheduling is to make the system more efficient, faster, and fairer.

Why do we need to schedule processes?

W

eduling is important in many different computer environ_ments. One
cs)ft';me mostgimporfant areas is scheduling which programs will work on the
CPU. This task is handled by the Operating System (OS) of the computer
and there are many different ways in which we can choose to configure
programs. .
Process Scheduling allows the OS to allocate CPU time for_ each _
process. Another important reason to use a process scheduling system is
that it keeps the CPU busy at all times. This allows you to get less
response time for programs.
Considering that there may be hundreds of programs that need to work,
the OS must launch the program, stop it, switch to another program, etc.
The way the OS configures the system to run another in the CPU is called
“context switching”. If the OS keeps context-switching programs in and
out of the provided CPUs, it can give the user a tricky idea that he or she
can run any programs he or she wants to run, all at once.
So now that we know we can run 1 program at a given CPU, and we
know we can change the operating system and remove another one using
the context switch, how do we choose which programs we need. run, and
with what program?
Thgt's where scheduling comes in! First, you determine the metrics,
saying Sqmetrlmg Ii}<e “t'he amount of time until the end”. We will define
this metric as .the time interval between which a function enters the
system until it is completed”. Second. you decide on a metrics that

reduces metrics. We want our tasks to end as so '
. on as possible.
hat is the need for CPU scheduling algorithm? P

In Multiprogramming, if the long-term scheduler selects multiple | / O binding
processes then most of the time, the CPU remains an idle. The function of an
effective program is to improve resource utilization.

Objectives of Process Scheduling Algorithm: .

. Utilization of CPU at maximum level. Keep CPU as busy as possible.

. Allocation of CPU should be fair.

« Throughput should be Maximum. i.e. Number of processes that
complete their execution per time unit should be maximized.

« Minimum turnaround time, i.e. time taken by a process to finish
execution should be the least.

« There should be a minimum waiting time and the process should not
starve in the ready queue.

« Minimum response time. It means that the time when a process
produces the first response should be as less as possible.

What are the different terminologies to take care of in any CPU Scheduling

algorithm? | AF ,
« Arrival Time: Time at which the process arrives in the ready queue. :(—:/:’C
« Completion Time: Time at which process completes its execution. #=> TAT<
« Burst Time: Time required by a process for CPU execution. L,mek" =
o Turn Around Time: Time Difference between completion time and arrival

time.
Turn Around Time = Completion Time — Arrival Time % TAT=CT 4 T)

« Waiting Time(W.T): Time Difference between turn around time and burst
time.

Waiting Time = Turn Around Time — Burst Time % TAT= WTHRT

H
Id/ aMival e 1 kevo TAT equmd-h;, CT&%Q&%E psocers

What are the different types of CPU Scheduling Algorithms?
There are mainly two types of scheduling methods:
. st:/eit?:rr?g;i\fle Sch_edL_JIinq: Preemptive scheduling is used when a process
rom funnin vaiti
oy ste g state to ready ktate or from the @vamng state to the

+ Non-Preemptive Scheduling: No

: INg: Non-Preempti ina i
process terminates . or wh mptive scheduling is used when a

Walting stao €N a process switches from running state to

CPU Scheduling

T

Preemptive -

Non-Preempgtive

e f%
Longest

Priority : Shortest ¥Longest
. Remaining)
Soneduing / . / Job First| |Job First])
: Job First "
Fret | . Highest
Shortest Round- Come"/ Re;z;)igse
Remaining P \Robin First- Next
Job First M Serve

Let us now learn about these CPU scheduling algorithms in operating
systems one by one:

V‘lﬁzirst Come First Serve:

FCFS considered to be the simplest of all operating system scheduling

algorithms. First come first serve scheduling algorithm states that the

process that requests the CPU first is allocated the CPU first and is

implemented by using FIFO queue.

Characteristics of FCFS:

. FCFS supports non-pre-emptive and pre-emptive CPU scheduling
algorithms.

« Tasks are always executed on a First-come, First-serve concept.

« FCFS is easy to implement and use.

« This algorithm is not much efficient in performance, and the wait time is
quite high.

Advantages of FCFS:

« [Easy to implement

« First come, first serve method

Disadvantages of FCFS:

« FCFS suffers from Convoy effect.

« The average wgiting time is much higher than the other algorithms.
« FCFSis very simple and easy to implement and hence not much efficient.

2. Shortest Job First(SJF):

Shortestj_ob first (SJF) is a scheduling process that selects the waiting
process with the smallest execution time to execute next. This scheduling

»d may or may not be preemptive. Significantly re
:w‘}f.:m time for other processes waiting t y reduces the average

N est Job First © be exeatited. The full form of Sy
l- 5“)) ‘ .

characteristics of SJF:

Sh.o!’test.Job first has the advantage of having a minimum average
waiting time among all operating system scheduling algorithms,
. Itis associated with each task as a unit of time to complete.

. It may cause staryation if shorter processes keep coming. This problem
can be solved using the concept of ageing.
Advantages of Shortest Job first:

. As SJE reduces the average waiting time thus, it is better than the first
come first serve scheduling algorithm.

« SJF is generally used for long term scheduling
Disadvantages of SJF:

« One of the demerit SJF has is starvation.

+ Many times it becomes complicated to predict the length of the upcoming
CPU request

3. Longest Job First(LJF):

Longest Job First(LJF) scheduling process is just opposite of shortest job

first (SJF), as the name suggests this algorithm is based upon the fact that

the process with the largest burst time is processed first. Longest Job First is

non-preemptive in nature.

Characteristics of LJF:

« Among all the processes waiting in a waiting queue, CPU is always
assigned to the process having largest burst time.

. If two processes have the same burst time then the tie is broken
using FCFS i.e. the process that arrived first is processed first.

« LJF CPU Scheduling can be of both preemptive and non-preemptive
types.

Advantages of LJF:

« No other task can schedule until the longest job or process executes
completely.

« All the jobs or processes finish at the same time approximately.

Disadvantages of LJF:

. Generally, the LJF algorithm gives a very high average waiting

time and_ average turn-around time for a given set of processes.
« This may lead to convoy effect.

To learn about how to implement this CPU scheduling algorithm, please refer
to our detailed article on the Longest job first scheduling.

4. Priority Scheduling:

emptive Priority CPU Scheduling Algorithm is a pre_—emptlve method
Zf%PUZchedulinq alZorithm that works based on thg priority of a prgcesﬂi !(n
this algorithm, the editor sets the functions to be as important, meaning t a
the most important process must be done first. In the case of any conflict,
that is, where there are more than one processor with eqqal value, then the
most important CPU planning algorithm works on the basis of the FCFS

(First Come First Serve) algorithm.
Characteristics of Priority Scheduling:

» Schedules tasks based on priority. _ o
When the higher priority work arrives while a task with less prlo'nty is
executed, the higher priority work takes the place of the less priority one
and

« The latter is suspended until the execution is complete.

« Lower is the number assigned, higher is the priority level of a process.
Advantages of Priority Scheduling:

« The average waiting time is less than FCFS

« Less complex

Disadvantages of Priority Scheduling: _ o
One of the most common demerits of the Preemptive priority CPU

scheduling algorithm is the Starvation Problem. This is the problem in .which
a process has to wait for a longer amount of time to get scheduled into
the CPU. This condition is called the starvation problem.

5. Round robin:

Round Robin is a CPU scheduling algorithm where each process is cyclically

assigned a fixed time slot. It is the preemptive version of First come First Serve

CPU Scheduling algorithm. Round Robin CPU Algorithm generally focuses on

Time Sharing technique.

Characteristics of Round robin:

« It's simple, easy to use, and starvation-free as all processes get the
balanced CPU allocation.

* One of the most widely used methods in CPU scheduling as a core.

+ ltis considered preemptive as the processes are given to the CPU for a
very limited time.

Advantages of Round robin:

. gngJJnd robin seems to be fair as €Very process gets an equal share of

* The ”ewly created process is added to the end of the ready queue.

jearn about how to implement this CPU scheduling algorithm, please refer
O"Ou,- detailed article on the Round robin Scheduling algorithm.

6. Shortest Remaining Time First:

shortest remaining time first is the preemptive version of the Shortest job
first which we have discussed earlier where the processor is allocated to the
job closest to completion. In SRTF the process with the smallest amount of

time remaining until completion is selected to execute.

Characteristics of Shortest remaining time first:
. SRTF algorithm makes the processing of the jobs faster than SJF

algorithm, given it's overhead charges are not counted.
. The context switch is done a lot more times in SRTF than in SJF and

consumes the CPU’s valuable time for processing. This adds up to its
processing time and diminishes its advantage of fast processing.

Advantages of SRTF:
. In SRTF the short processes are handled very fast.

. The system also requires very little overhead since it only makes a
decision when a process completes or a new process is added.

Disadvantages of SRTF:

. Like the shortest job first, it also has the potential for process starvation.

. Long processes may be held off indefinitely if short processes are
continually added.

To learn about how to implement this CPU scheduling algorithm, please refer

to our detailed article on the shortest remaining time first.

7. Longest Remaining Time First:
The longest remaining time first is a preemptive version of the longest job

first scheduling algorithm. This scheduling algorithm is used by the operating
system to program incoming processes for use in a systematic way. This
algorithm schedules those processes first which have the longest processing

time remaining for completion.
Ch:racteristics of longest remaining time first:
* Among all the processes waiting in a waiting '

(queue, the CPU is always
;si&gned to the process having the largest burst time. ’
usivr\:o Eggggses have the same burst time then the tie is broken

. LJF% B ;{:dltﬂii process that arrived first is processed first.
yoes, g can be of both preemptive and non-preemptive

Advantages of LRTF:

can exec i
¢ ute until the longest task executes completely.

O other process

* Allthe jobs or

. ro ini

Disa dvantages or; LRf?rst:es finish at the same time approximately.

This algorithm gives ave

, ; ry high aver iting ti
around time for g given set of prﬁg—egsewam\nqm and%

. This may lead to g convoy effact

9. Multiple Queye Scheduling:

Processes i .
osch claesz 't?at:ﬁsready dueue can be divided into differen classes where
a foreground j tOWn Scheduling needs. For example, a common division is
These I in eractlvg) Process and a background (batch) process.

_ > two ¢ asses have different scheduling needs. For this kind of
situation Multileve| Queue Scheduling is ysed.

High Priority
System processes > Queue 1
Interactive Processes Quene 2
Batch Processes — Quene 3
N
_ Low Priority

The description of the processes in the above diagram is as follows:

« System Processes: The CPU itself has its process to run, generally
termed as System Process.

« Interactive Processes: An Interactive Process is a type of process in
which there should be the same type of interaction.

 Batch Processes: Batch processing is generally a technique in the
Operating system that collects the programs and data together in the form
of a batch before the processing starts.

Advantages of multilevel queue scheduling:

« The main merit of the multilevel queue is that it has a low scheduling
overhead.

Disadvantages of multilevel queue scheduling:

« Starvation problem

« ltis inflexible in nature

0. Multilevel Feedback Queue Scheduling::

yultilevel Feedback Queue Scheduling (MLFQ) CPU Scheduling is

jike Multilevel Queue Scheduling but in this process can move between
the queues. And thus, much more efficient than multilevel queue scheduling.
Characteristics of Multilevel Feedback Queue Scheduling:

. In amultilevel queue-scheduling algorithm, processes are permanently
assigned to a queue on entry to the system, and processes are not
allowed to move between queues.

» As the processes are permanently assigned to the queue, this setup has
the advantage of low scheduling overhead,

« But on the other hand disadvantage of being inflexible.

Advantages of Multilevel feedback queue scheduling:

« Itis more flexible : A

« It allows different processes to move between different queues
Disadvantages of Multilevel feedback gqueue scheduling:

« Italso produces CPU overheads ’

‘ « ltis the most complex algorithm.
~
S
-y
g
E |

(VECES |p | > 1 43| Po| &]
T 5 PN A4S SS S8 e gmphWe

M (b~ g ,a/(,) 6 F{’:‘m&)
AW ((AT) = 29 4mc > F’L @mpPL T v
contert A '&&VWZ(

Hecp 15 <AL

qt)&\ Pﬁo);.\N‘r C’Eﬁ:? -
chs o0 2 913 25 26 M
3 (e Ma(mr);ls'zms :

: 59 aud (wr)=10MS ° |

rATJ”\;I @QE P4 i

\ 2 p/’\g | \fiﬂ’:‘féLﬁ £ .'9?

&
k\,\a(wr): Ll))
4 §oﬁ@5572kxbﬁml@39 W@of) Sh%rz'?@q Agnandd <473

0] ey VAT - BRI EALS
P\%/g‘s p<| Al ol 2 92@_2/

Pr 24)sslss © ¢ B 18 3138 plsl4
175t 4 Avgirer) =282 | 4|5 é\ 1

(o B tg 2\& . .
f _';’, z /3 B A«Ag(w) K
(D Pajeikyweih guvived Yo = | Pre-emehve S3F

AT BT Fn ‘ —_,-—————-’-“3‘—" :@PQ zhf@)b@”"t

1£°32mS

J e 4 2

’ w2, 5 -

G5 s #o Toloqulia] Mt =2
Avg(TAT) = & 1066M 0 3 Y
m(wr) A 1667 me . & l f

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

