
Sdet hnc etey G1ALVTN OS Bobk

Copie on websifes)

Introduction of Process Management

Program vs Process: A process is a program in execution. For example,
when we write a program in C or C++ and compile it, the compiler creates
binary code. The original code and binary code are both programs. When we

actually run the binary code, it becomesa process.
A process is an 'active' entity instead of a program, which is considered a
passive' entity. A single program can create many processes when run
multiple times; for example, when we open a .exe or binary file multiple
times, multiple instances begin (multiple processes are created).

What does a process look like in memory?

Program vs Process: A process is a program in execution. For example,
when we write a program in C or C++ and compile it, the compiler creates
binary code. The original code and binary code are both programs. When we

actually run the binary code, it becomes a process.

A process is an 'active' entity instead of a program, which is considered a

passive' entity. A single program can create many processes when run
multiple times; for example, when we open a .exe or binary file multiple
times, multiple instances begin (multiple processes are created)

Stack Home work

what is kemel

har is
monalithe

2micro
kervel

4rein|oetat

what
are

dijtereues
amerg

Adedalban

engage

Heap

Data
The Canvoy Etect Is a phenonenon

m hiuw emlise opeoua sstem

Mou down ou'ng fva ew sloue

Text

Poe m e Jysteum. nuhem CPU

ime Is aliotied to a pAocEM the CFS

algonthm als mes Hiat othes Prncesres enly

cPu time ohen he current one t fmiha

long prvsess
mall prv ess w ah19

Text Section: A Process, sometimes known as the Text Section, also includes
the current activity represented by the value of the
Program Counter.
Stack: The stack contains temporary data, such as function parameters, returns addresses, and local variables.
Data Section: Contains the global variable.
Heap Section: Dynamically allocated memory to process during its run time.

Attributes of a Process: A process has the following attributes.
1. Process ld: A unique identifier assigned by the operating system
2. Process State: Can be ready, running, etc.

3. CPU registers: Like the Program Counter (CPU registers must be saved and restored when a
process is swapped in and out of CPU)
4. Accounts information: Amount of CPU used for process execution, time limits, execution ID etc.

5.1/0 status information: For example, devices allocated to the process, open files, etc.
6. CPU scheduling information: For example, Priority (Different processes may have different priorities, for example a shorter process assigned high priority in the shortest job first scheduling)
All of the above attributes of a process are also known as the context of the process.Every processi has its own process control block(PCB), i.e each process will have à unique PCB. All of the above attributes are part of the PCB.

States of Process: A process is in one of the following states:

1. New: Newly Created Process (or) being-created process.
2. Ready: After creation process moves to Ready state, i.e. the process is ready for execution.
3. Run: Currently running process in CPU (only one process at a time can be under execution in a single processor).

4. Wait (or Block): When a process requests /0 access.

5. Complete (or terminated): The process completed its execution.
6. Suspended Ready: When the ready queue becomes full, some processes are moved to suspended ready state

7. Suspended Block: When waiting queue becomes full.

Terminate
Running

Block Preempt

Run
Create

Ready -
Unblock Blocked

SuspendTResume Suspend Resume

Ready
Suspended UnblockSuspended Blocked

Context Switching: The process of saving the context of one process and loading the context of another process is known as Context Switching. In simple terms, it is like loading and unloading the process from the running state to the ready state.
When does context switching happen? 1. When a high-priority process comes to a ready state (i.e. with higher priority than the running process e 2. An Interrupt occurs @sottoo 3. User and kernel-mode swit
h (It is not necessary though) 4. Pre-emptive CPU scheduling used.

Handoae

States of a Process in Operating Systems

Dispatch
New Admit Ready Running Exit

Timeout

suspend
Event wait

Suspended
ready

Main memory
(RAM)

Blocked

Svent o
OCCu

Activate
Suspend

Suspended
blocked

Secondary Memory
Ctke HD)

New (Create) - In this step, the process is about to be created but not yet

created, it is the program which is present in secondary memory that will
be picked up by OS to create the process.
Ready- New -> Ready to run. After the creation of a process, the

process enters the ready state i.e. the process is loaded into the main
memory. The process here is ready to run and is waiting to get the CPU
time for its execution. Processes that are ready for execution by the CPU
are maintained in a queue for ready processes.
Run- The process is chosen by CPU for execution and the instructions
within the process are executed by any one of the available CPU cores.
Blocked or wait - Whenever the process requests access to l/O or

needs input from the user or needs access to a critical region(the lock for
which is already acquired) it enters the blocked or wait state. The proces
continues to wait in the main memory and does not require CPU. Once
the /O operation is completed the process goes to the ready state.
Terminated or completed - Process is killed as well as PCB is deleted.

Suspend ready- Process that was initially in the ready state but was
Swapped out of main memory(refer Virtual Memory topic) and placed onto
external storage by scheduler is said to be in suspend ready state. The
process will transition back to ready state whenever the process is again
brought onto the main memory.
Suspend wait or suspend blocked - Similar to suspend ready but uses
the process which was performing 1/O operation and lack of main memory

sed them to move to secondary memory. When work is finished it may
go to suspend ready.

Event occur qeAY

.

CPU and l/O Bound Processes: If the process is intensive in terms of CPU operations then it is called CPU bound process. Similarly, If the process is intensive in terms of /O operations then it is called 1/O bound process.
Types of schedulers: > AlsD khowm o Job schedlan
1. Long term =performance - Makes a decision about how many

processes should be made to stay in the ready state, this decides the
degree of multiprogramming. Once a decision is taken it lasts for a long

time hence called long term scheduler. 2. Short term - Context switching time - Short term scheduler will decide
which process to be executed next and then it will call dispatcher. A
dispatcher is a software that moves process from ready to run and vice
versa. In other words, it is Context switching 3. Medium term - Swapping time - Suspension decision is taken by medium term scheduler. Medium term scheduler is used for swapping that is moving the process from main memory to secondary and vice
versa.

Multiprogramming - We have many processes ready to run. There are two

types of multiprogramming:
1. Pre-emption - Process is forcefully femoved from CPU. Pre-emption is

also called as time sharing or multitasking.
2. Non pre-emption - Processes are not removed until they complete the

execution.

etided by Lorg term S
Degree of multiprogramming The number of processes that can reside in
the ready state at maximum decides the degree of multiprogramming, e.g., if
the degree of programming = 100, this means 100 processes can reside in

the ready state at maximum.

Process Schedulers in Operating
Systemn
The process scheduling is the activity of the process manager that handles
the removal of the running process from the CPU and the selection of
another process on the basis of a particular strategy.
Process scheduling is an essential part of a Multiprogramming operating
systems. Such operating systems allow more than one process to be loaded
into the executable memory at a time and the loaded process shares the CPU using time multiplexing.
There are three types of process scheduler.

1. Long Term or job scheduler
It brings the new process to the 'Ready State'. It controls Degree of Multi-programming, i.e., number of process present in ready state at any point of time. It is important that the long-term scheduler make a careful selection of both l/O and CPU-bound processes. 1/O bound tasks are which use much of their time in input and output operations while CPU bound processes are which spend their time on CPU. The job scheduler increases efficiency by maintaining a balance between the two.

2. Short term or CPU scheduler
It is responsible for selecting one process from ready state for scheduling it on the running state. Note: Short-term scheduler only selects the process to schedule it doesn't load the process on running. Here is when all the scheduling algorithms are used. The CPU scheduler is responsible for ensuring there is no starvation owing to high burst time processes. Dispatcher is responsible for loading the process selected by Short-term scheduler on the CPU (Ready to Running State) Context switching is done by dispatcher only. A dispatcher does the following: 1. Switching context.
2. Switching to user mode.
3. Jumping to the proper location in the newly loaded program. 3. Medium-term scheduler
It is responsible for suspending and resuming the process. It mainly does Swapping (moving processes from main memory to disk and vice versa). Swapping may be necessary to improve the process mix or because a change in memory requirements has overcommitted available memory, requiring memory to be freed up. It is helpful in maintaining a perfect balance between the !/O bound and the CPU bound. It reduces the degree of multiprogramming.

Process Table and Process Control
Block (PCB)
While creating a process the operating system performs several operations. To identify the processes, it assigns a process identification number (PID) to each process. As the operating system supports multi-programming, it needs to keep track of all the processes. For this task, the process control block (PCB) is used to track the process's execution status. Each block of memory contains information about the process state, program counter, stack pointer, status of opened files, scheduling algorithms, etc. All these information is required and must be saved when the process is switched from one state to another. When the process makes a transition from one state to another, the operating system must update information in the process's PCB A process control block (PCB) contains information about the process, i.e. registers, quantum, priority, etc. The process table is an array of PCB's, that

means logically contains a PCB for all of the current processes in the
system.

Pointer- It is a stack pointer which is required to be saved when the
process is switched from one state to another to retain the current
position of the process.
Process state - It stores the respective state of the process. Process number - Every process is assigned with a unique id known as
process ID or PID which stores the process identifier.
Program counter- lt stores the counter which contains the address of
the next instruction that is to be executed for the process. Register - These are the CPU registers which includes: accumulator,

base, registers and general purpose registers.
Memory limits - This field contains the information about memory
management system used by operating system. This may include the
page tables, segment tables etc.
Open files list- This information includes the list of files opened for a process.

Interrupts
The interrupt is a signal emitted by hardware or software when a process or
an event needs immediate attention. It alerts the processor to a high-priority process requiring interruption of the current working process. In 1/O devices
one of the bus control lines is dedicated for this purpose and is called the Interrupt Service Routine (ISR).

Thre Thread in Operating System What is a Thread? ero cess yk
A thread is a path of executionwithin a processA process can contain multiple threads.
Why Multithreading?
A thread is also known aslightweight process The idea is to achieve parallelism by dividing a process into multiple threads. For example, in a browser, multiple tabs can be different threads. MS Word uses multiple threads: one thread to format the text, another thread to process inputs, etc. More advantages of multithreading are discussed below Process vs Thread?

The primary difference is that threads within the same process run in a shared memory space, while processes run in separate memory spaces. Threads are not independent of one another like processes are, and as a result threads share with other threads their code section, data section, and 0S resources (like open files and signals). But, like process, a thread has iis Own program counter (PC), register set, and stack space.

Difference between Process and
Thread
Process: Processes are basically the programs that are dispatched from the
ready state and are scheduled in the CPU for execution. PCB(Process

Control Block) holds the concept of process. A process can create other
processes which are known as Child Processes. The process takes more
time to terminate and it is isolated means it does not share the memory with
any other process.
The process can have the following states new, ready, running, waiting,
terminated, and suspended.
Thread: Thread is the segment of a process which means a process can
have multiple threads and these multiple threads are contained within a
process. A thread has three states: Running, Ready, and Blocked.

Difference between Process and Thread:

S.NO Process Thread

Process means any program
1 Thread means a segment of a process.

is in execution.

The process takes more timne
2 to terminate. The thread takes less time to terminate.

It takes more time for
3 creation. It takes less time for creation.

It also takes more time for 4. context switching.
It takes less time for context switching.

The process is less efficient in Thread is more efficient in terms of terms of communication.

communication.

Thread S.NO Process

We don't need multi programs in action for

Multiprogramming holds the multiple threads because a single process
concepts of multi-process. 6. consists of multiple threads.

7. The process is isolated. Threads share memory.

The process is called the

heavyweight process.
A Thread is lightweight as each thread in a

process shares code, data, and resources.

Thread switching does not require calling an Process switching uses an

interface in an operating operating system and causes an interrupt to
system. the kernel.

If one process is blocked then

it will not affect the If a user-level thread is blocked, then all
10. execution of other processes other user-level threads are blocked.

Thread has Parents' PCB, its own Thread
The process has its own

Process Control Block, Stack, Control Block, and Stack and common

Address space. 11. and Address Space.

Since all threads of the same process share
address space and other resources so any Changes to the parent changes to the main thread may affect the process do not affect child behaviour of the other threads of the 12. processes.
process.

No system call is involved, it is created using 13 A system call is involved in it. APls.

Thread S.NO Process

The process does not share

data with each other. Threads share data with each other.
14

CPU Scheduling in Operating Systems
Scheduling of processes/work is done to finish the work on time. CPUJ

Scheduling is a process that allows one process to use the CPU while

another process is delayed (in standby) due to unavailability of any
resources such as |/0 etc, thus making full use of the CPU. The purpose of

CPU Scheduling is to make the system more efficient, faster, and fairer.

Why do we need to schedule processes?

Scheduling is important in many different computer environments. One
of the most important areas is scheduling which programs will work on thee

CPU. This task is handled by the Operating System (OS) of the computer
and there are many different ways in which we can choose to configure

programs.
Process Scheduling allows the OS to allocate CPU time for each
process. Another important reason to use a process scheduling system is
that it keeps the CPU busy at all times. This allows you to get less
response time for programs.

Considering that there may be hundreds of programs that need to work,
the OS must launch the program, stop it, switch to another program, etc.
The way the OS configures the system to run another in the CPU is called

"context switching". If the OS keeps context-switching programs in and
out of the provided CPUs, it can give the user a tricky idea that he or she
can run any programs he or she wants to run, all at once.
So now that we know we can run 1 program at a given CPU, and we
know we can change the operating system and remove another one using the context switch, how do we choose which programs we need. run, and
with what program?
That's where scheduling comes in! First, you determine the metrics, saying something like "the amount of time until the end". We will define this metric as "the time interval between which a function enters the system until it is completed". Second, you decide on a metrics that reduces metrics. We want our tasks to end as soon as possible. What is the need for CPU scheduling algorithm? CPU scheduling is the process of deciding which process will own the CPU to use while another process is suspended. The main function of the CPU Scheduling is to ensure that whenever the CPU remains idle, the OS has at

east selected one of the processes available in the ready-to-use line.

In Multiprogramming, if the long-term scheduler selects multiple I/ O binding
processes then most of the time, the CPU remains an idle. The function of an

effective program is to improve resource utilization.

Objectives of Process Scheduling Algorithm:
. Utilization of CPU at maximum level. Keep CPU as busy as possible.

Allocation of CPU should be fair.
.Throughput should be Maximum. i.e. Number of processes that

complete their execution per time unit should be maximized
Minimum turnaround time, i.e. time taken by a process to finish

execution should be the least.
There should be a minimum waiting time and the process should not

starve in the ready queue.
Minimum response time. It means that the time when a process
produces the first response should be as less as possible.

What are the different terminologies to take care of in any CPU Scheduling

algorithm?
Arrival Time: Time at which the process arrives in the ready queue.

.Completion Time: Time at which process completes its execution.
Burst Time: Time required by a process for CPU execution.

AT

TAT

Turn Around Time: Time Difference between completion time and arrival
LywTeB-

time.
Tum Around Time = Completion Time Arival TimeTAT= CT-4 T)

Waiting Time(W.T): Time Difference between turn around time and burst
time.

Waiting Time = Tum Around Time Burst Time TAT= WT+BT

ival me n kew TAT equaloto CTJas a the poces

What are the different types of CPU Scheduling Algorithms?
There are mainly two types of scheduling methods:

.Preemptive Scheduling: Preemptive scheduling is used when a process switches from Funning state to ready state or from the waiting state to the ready state
Non-Preemptive Scheduling: Non-Preemptive scheduling is used when a process terminates, or when a process switches from running state to waiting state.

CPU Scheduling|

Preemptive. Non-Preempthive

Priority
Scheduling|

Longest
Remaining
Job First

Shortest
Job First

| Longest
Job First

Highest
Response

First
Round
Robin

Shortest Come Ratio
Remaining First

Next
Job First Serve

Let us now learn about these CPU scheduling algorithms in operating
systems one by one

. First Come First Serve:
FCFS considered to be the simplest of all operating system scheduling
algorithms. First come first serve scheduling algorithm states that the

process that requests the CPU first is allocated the CPU first and is

implemented by using FIFO queue
Characteristics of FCFS:

FCFS supports non-pre-emptive and pre-emptive CPU scheduling
algorithms.
Tasks are always executed on a First-come, First-serve concept.

.FCFS is easy to implement and use.
This algorithm is not much efficient in performance, and the wait time is

quite high.
Advantages of FCFS:

Easy to implement
First come, first serve method

Disadvantages of FCFS:
FCFS suffers from Convoy effect.

The average waiting time is much higher than the other algorithms.
FCFS is very simple and easy to implement and hence not much efficient.

2. Shortest Job First(SJF):

Shortest job first (SJF) is a scheduling process that selects the waitingg process with the smallest execution time to execute next. This scheduling

not be preemptive. Significantly reduces the average
may or may

aiting time otime for other processes waiting to be executed. The full form of SJF
& Shortest

Job First.

Characteristics of SJF:

Shortest Job first has the advantage of having a minimum average waiting tinme among all operating system scheduling algorithmns.
It is associated with each task as a unit of time to complete.
It may cause starvation if shorter processes keep coming. This problem
can be solved using the concept of ageing.

Advantages of Shortest Job first:
As SJF reduces the average waiting time thus, it is better than the first
come first serve scheduling algorithm.
SJF is generally used for long term scheduling

Disadvantages of SJF:
One of the demerit SJF has is starvation.
Many times it becomes complicated to predict the length of the upcoming
CPU request

3. Longest Job First(LJF):

Longest Job First(LJF) scheduling process is just opposite of shortest job
first (SJF), as the name suggests this algorithm is based upon the fact that
the process with the largest burst time is processed first. Longest Job First is

non-preemptive in nature.
Characteristics of LJF:
.Among all the processes waiting in a waiting queue, CPU is always

assigned to the process having largest burst time.
If two processes have the same burst time then the tie is broken
using FCFS i.e. the process that arrived first is processed first.
LJF CPU Scheduling can be of both preemptive and non-preemptive

types.
Advantages of LJF:

No other task can schedule until the longest job or process executess

completely.
All the jobs or processes finish at the same time approximately.

Disadvantages of LJF:
Generally, the LJF algorithm gives a very high average waiting

time and average turn-around time for a given set of processes.
This may lead to convoy effect.

To learn about how to implement this CPU scheduling algorithm, please refer
to our detailed article on the Longest job first scheduling.

4. Priority Scheduling:

Preemptive Priority CPU Scheduling Algorithm is a pre-emptive method
of CPU scheduling algorithm that works based on the priority of a process. In

this algorithm, the editor sets the functions to be as important, meaning that
the most important process must be done first. In the case of any conflict,
that is, where there are more than one processor with equal value, then the

most important CPU planning algorithm works on the basis of the FCFS
(First Come First Serve) algorithm.
Characteristics of Priority Scheduling:

Schedules tasks based on priority.
When the higher priority work arrives while a task with less priority is

executed, the higher priority work takes the place of the less priority one

and
The latter is suspended until the execution is complete.
Lower is the number assigned, higher is the priority level of a process.

Advantages of Priority Scheduling:
The average waiting time is less than FCFS
Less complex

Disadvantages of Priority Scheduling:
One of the most common demerits of the Preemptive priority CPU
scheduling algorithm is the Starvation Problem. This is the problem in which
a process has to wait for a longer amount of time to get scheduled into
the CPU. This condition is called the starvation problem.

5. Round robin:

Round Robin is a CPU scheduling algorithm where each process is cyclically
assigneda fixed time slot. It is the preemptive version of First come First Serve CPU Scheduling algorithm. Round Robin CPU Algorithm generally focuses on
Time Sharing technique.
Characteristics of Round robin:

It's simple, easy to use, and starvation-free as all processes get the balanced CPU allocation.
One of the most widely used methods in CPU scheduling as a core It is considered preemptive as the processes are given to the CPU for a very limited time.

Advantages of Round robin:
Round robin seems to be fair as every process gets an equal share of CPU

The newly created process is added to the end of the ready queue.

To learn

Our detailed article on the Round robin Scheduling algorithm.
about how to implement this CPU schedulin algorithm, please refer

6. Shortest Remaining Time First:

Shortest remaining time first is the preemptive version of the Shortest job

first which we have discussed earlier where the processor is allocated to the

job closest to completion. In SRTF the process with the smallest amount of

time remaining until completion is selected to execute.

Characteristics of Shortest remaining time first:

SRTF algorithm makes the processing of the jobs faster than SJF

algorithm, given it's overhead charges are not counted.

The context switch is done a lot more times in SRTF than in SJF and

consumes the CPU's valuable time for processing. This adds up to its

processing time and diminishes its advantage of fast processing.

Advantages of SRTF:

In SRTF the short processes are handled very fast.

The system also requires very little overhead since it only makes a

decision when a process completes ora new process is added.

Disadvantages of SRTF:
Like the shortest job first, it also has the potential for process starvation.

Long processes may be held off indefinitely if short processes are

continually added.
To learn about how to implement this CPU scheduling algorithm, please refer

to our detailed article on the shortest remaining time first.
7. Longest Remaining Time First:
The longest remaining time first is a preemptive version of the longest jobb
first scheduling algorithm. This scheduling algorithm is used by the operating
system to program incoming processes for use in a systematic way. This
algorithm schedules those processes first which have the longest processing
time remaining for completion.
Characteristics of longest remaining time first:
Among all the processes waiting in a waiting queue, the CPU is always

assigned to the process having the largest burst time.
If two processes have the same burst time then the tie is broken

using FCESi.e. the process that arrived first is processed first.
LJF CPU Scheduling can be of both preemptive and non-preemptive types.

Advantages of LRTF:
No other process can execute until the longest task executes complerely. All the jobs or processes finish at the same time approximately. Disadvantages of LRTF:

This algorithm gives a very high average waiting time and average turn-
around time for a given set of processes. This may lead to a convoy effect.

9. Multiple Queue Scheduling
Processes in the ready queue can be divided into different classes where
each class has its own scheduling needs. For example, a common division is
a foreground (interactive) process and a background (batch) process.
These two classes have different scheduling needs. For this kind of situation Multilevel Queue Scheduling is used.

High Priority

System processes Quese 1

Interactive Processes Queae 2

Batch Processes Queue 3

Low Priority

The description of the processes in the above diagram is as follows:
System Processes: The CPU itself has its process to run, generally termed as System Process.
.Interactive Processes: An Interactive Process is a type of process in which there should be the same type of interaction.

Batch Processes: Batch processing is generally a technique in the
Operating system that collects the programs and data together in the form of a batch before the processing starts.

Advantages of multilevel queue scheduling:
The main merit of the multilevel queue is that it has a low scheduling overhead.
Disadvantages of multilevel queue scheduling:

Starvation problem
It is inflexible in nature

0. Multilevel Feedback Queue Scheduling:

Por aie

Awia

afu ltilevel Feedback Queue Scheduling (MLFQ) CPU Scheduling is
tke Multilevel Queue Scheduling but in this process can move between the queues. And thus, much more efficient than multilevel queue scheduling. Characteristics of Multilevel Feedback Queue Scheduling: In a multilevel queue-scheduling algorithm, processes are permanently assigned to a queue on entry to the system, and processes are not

allowed to move between queues.
As the processes are permanently assigned to the queue, this setup has
the advantage of low scheduling overhead,

.But on the other hand disadvantage of being inflexible.
Advantages of Multilevel feedback queue scheduling It is more flexible
It allows different processes to move between different queues Disadvantages of Multilevel feedback queue scheduling:

It also produces CPU overheads
It is the most complex algorithm.

A
5S

P 24029 ps
OS OFCES B

2 45 SS S3 Pe-emptjve
AUT)Ag4 2613ms
Aw (AT) =244m Jump

Context AutohaN

PCB 1S coalexE

Pio o ps$4S

'seT|onkc, Phonki a
93

2 2s13

26 6s 03 g 13 25 26 Budekuda

AvT(TAT) = 1S 2ms
An (wr)-1oms 3

4 13

Phocese (BT CT| TA

7 19
4

vala) tlt12tS - 102 4 12 16 19 37

scrtesREbFin EJG| Beeemphve vetion sheated enang hmefi xS
BT L (s

er Ter

P2 24 |58|ss 0 3 8 t3 3 SBl4

1 4 Augr4r) -2t2

2

1s

Aug (TAD 72 fq(WT)
= 3 2

3. s3
Pajxk aim me!-

AT BT Pre eme hve sIF
Ready uev

33{ A (TA T) = 3 °33ms

2 32 22 Ava(wT) |33PMs 3 3 3313
4 6 712

Avg(tAr)4 066is

Avg (T 66 7 m

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

